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Abstract. A numerical technique for the dynamical simulation of three-dimensional rigid particles in a New-
tonian fluid is presented. The key idea is to satisfy the no-slip boundary condition on the particle surface by a
localized force-density distribution in an otherwise force-free suspending fluid. The technique is used to model
the sedimentation of prolate spheroids of aspect ratio b/a = 5 at Reynolds number 0·3. For a periodic lattice
of single spheroids, the ideas of Hasimoto are extended to obtain an estimate for the finite-size correction to the
sedimentation velocity. For a system of several spheroids in periodic arrangement, a maximum of the settling speed
is found at the effective volume fraction φ(b/a)2 ≈ 0·4, where φ is the solid-volume fraction. The occurence of
a maximum of the settling speed is partially explained by the competition of two effects: (i) a change in the
orientation distribution of the prolate spheroids whose major axes shift from a mostly horizontal orientation
(corresponding to small sedimentation speeds) at small φ to a more uniform orientation at larger φ, and (ii) a
monotonic decrease of the the settling speed with increasing solid-volume fraction similar to that predicted by the
Richardson–Zaki law ∝ (1 − φ)5·5 for suspensions of spheres.
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1. Introduction

Understanding the hydrodynamically coupled motion of rigid bodies suspended in a fluid is
an extremely complex and challenging endeavor. The problem has numerous applications in
technology and is ubiquitous in nature, including particle motion in fluidized beds for reaction
and combustion, sedimentation for separation or reaction in catalytic reactors, pneumatic and
sediment transport, the rheological behavior of pastes and complex fluids, erosion, etc. In
spite of the vast literature on the phenomena that occur in these systems, many fundamental
questions are still open.

In this paper, we consider suspended rigid particles that are sufficiently large and con-
sequently neglect Brownian motion. The motion of the suspending fluid is governed by the
Navier–Stokes equations, subject to the no-slip boundary conditions at the surface of the sus-
pended particles. We demonstrate how to obtain the force and torque exerted on the particles,
and use them to find the particle trajectories via Newton’s equations of motion.

Analytical results for particle motion require simplifying assumptions. For sufficiently
slow flows – more precisely when both the Reynolds number of the flow and the Stokes
number of the suspended particles are small – fluid and particle inertia are negligible. In this
limit, the Navier-Stokes equations reduce to the linear Stokes equations. It is then possible to
relate the forces and torques on all particles linearly to their linear and angular velocity by
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either a resistance or a mobility tensor which only depends on the instantaneous geometry
of the assembly. Jeffrey and Onishi [1] presented comprehensive results for the resistance
and mobility functions of two unequal spheres in unbounded fluids. Batchelor [2] determined
the average sedimentation velocity for randomly arranged equal-sized spheres at small solid-
volume fractions φ to be VSt(1 − 6·55φ + O(φ2)), where VSt is the Stokes sedimentation
velocity of a single sphere.

For concentrated systems of many spheres, the Stokesian-dynamics simulation technique [3,
4] constructs the resistance tensor essentially as the sum of an approximate tensor capturing
the effects of the hydrodynamic far field and the resistance tensor in a two-body lubrication
approximation which captures the near field. Stokesian dynamics and closely related tech-
niques [5, 6] demonstrate their capabilities in determining transport coefficients and structure
formation in sheared suspensions [7] or sedimentation [5] of spherical particles. A compre-
hensive summary of different numerical techniques and analytical results was presented by
Kim and Karrila [8, Parts III and IV].

For non-spherical particles, far fewer results are available. Jeffery [9] showed that ellip-
soids execute closed trajectories in the orientation space, known as Jeffery orbits. He obtained
analytical expressions for the orientation of the ellipsoid when one of the main axes is aligned
to the vorticity vector of the shear flow. Lamb [10, pp. 604–605] presented the resistance of an
ellipsoid with one of the main axes aligned with the direction of motion in infinitely extended
flows. Analytical results for the volume-fraction dependence of the sedimentation-velocity
statistical ensembles of sedimenting ellipsoids have not been derived.

Interest in the study of ellipsoids stems from the rheological properties of fiber suspensions.
In the limit of very large aspect ratios, a suspension of spheroids is expected to show rheolog-
ical properties very similar to those of suspensions of cylindrical fibers. Such suspensions are
encountered, e.g., in the production of paper and in the processing of fiber reinforced resins.
Fiber suspensions show a pronounced enhancement of viscosity in extensional flows [11].
Moreover, a clustering instability has been observed to enhance the sedimentation speed in
experiments [12, 13] and approximate dynamical simulations [14] beyond the values pos-
sible for single particles. Accordingly, there is considerable interest in the developement of
mathematical and numerical methods that provide insight into the microstructure of flows
involving many strongly interacting particles of elongated shape. For Stokes flows, Claeys
and Brady [15, 16] extend the Stokesian dynamics method to prolate spheroids in three-
dimensional flows and study the short-time limit of the hydrodynamics of prolate spheroid
suspensions, but not the time evolution of the suspension microstructure. Mackaplow and
Shaqfeh [14] have used the slender-body approximation in Monte-Carlo simulation of sta-
tic fiber assemblies and point-particle approximations for the dynamical simulation of fiber
suspensions, as will be discussed later in this paper.

In the Stokesian dynamics and boundary-integral methods, one exploits the linearity of the
Stokes equations to formulate the quasi-stationary problem in terms of the particle degrees of
freedom only. Larger particles imply larger sedimentation velocities and thus a larger particle
Reynolds number. If either the particle or the container Reynolds number approaches one,
we can no longer employ linearity or stationarity. A full spatial-temporal representation of the
fluid flow has proved to be the most convenient numerical formulation. For example, Sugihara-
Seki [17] considers the two-dimensional problem of one elliptical cylinder in channel flow
in the absence of external forces and uses finite-element computations involving a spatial
discretization adapted to the ellipse geometry. Feng and Joseph [18] extend previous work [19]
on circular cylinders in 2D to elliptical cylinders, likewise using finite-element methods.
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Numerical methods based on geometry-adaptive grid generation and repeated re-gridding in
the course of the simulation demand extreme computational resources, in particular in three
dimensions, and can thus only be applied to very small particle ensembles. Other authors
approach the problem from a slightly different perspective and sacrifice some numerical ac-
curacy for gains in computational efficiency by giving up geometrical adaptivity and using
structured grids instead. Examples include the lattice Boltzmann [20, 21] and conventional
techniques similar to finite differencing for the Navier–Stokes equation [22, 23, 24, 25].

In the following Section 2, we will summarize a technique presented in detail in Höfler
and Schwarzer [23] that employs a structured grid to represent the fluid motion and uses ideas
similar to the fictitious domain method of Glowinski et al. [24] and the immersed boundary
technique [26] to simulate sedimenting systems of prolate spheroids. Its salient feature is the
numerically convenient and efficient approach to implement the no-slip boundary condition
on the particle surface in combination with a conventional flow solver. The total effort of
implementation is comparable to that of a lattice-Boltzmann technique. In the form presented
here, the simulation technique is appropriate for statistically homogeneous suspensions at
particle volume fractions in the range of ≈ 0·005 . . . 0·15.

2. The marker technique

We describe the fluid motion by the dimensionless momentum equation,

D

Dt
u = ∇ · T + f̃ , (1)

where D
Dt

is the material derivative and all variables are nondimensionalized by use of the half
minor axis a of the suspended spheroids, the fluid density ρ and the Stokes settling velocity

VSt = 2

9

(ρp − ρ)ga2

η
, (2)

which is the asymptotic sedimentation velocity for an isolated sphere with density ρp and
radius a in an infinitely extended fluid with density ρ and shear viscosity η under the ac-
tion of gravity g in the −z = −x2 direction. The tensor T is the Newtonian stress tensor,
Tij = −p̃δij + (1/Re)[(∂/∂xi)uj + (∂/∂xj)ui], while f̃ denotes the volume-force density.
The Reynolds number is defined as Re = aVStρ/η. We have assumed constant fluid density
which implies incompressibility, thus ∇ ·u = 0. The divergence of the stress tensor then reads
∇·T = −∇p̃+(1/Re)∇2u. It is computationally convenient to cancel the gravitational contri-
bution −ga/V 2

Stez to f̃ against the hydrostatic pressure −gaz/V 2
St. We introduce the symbols

p and f to denote the remaining dynamic contributions to the pressure and the volume force
terms, respectively. With these conventions, we obtain the Navier-Stokes equations,

D

Dt
u = −∇p + 1

Re
∇2u + f , (3)

accompanied by the incompressibility constraint ∇ · u = 0. We discretize Equation (3) on a
regular, staggered marker-and-cell (MAC) mesh to second-order precision in space (cf., e.g.,
[27]). For the time stepping, we employ an operator-splitting-technique which is explicit and
accurate to first order: A term u∗ is added and subtracted on the left-hand side of Equation
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(3), which permits a split of (3) into a system of two equations for the discretized variables
un, pn and f n,

u∗ − un

�t
= −(un · ∇)un + 1

Re
∇2un + f n, (4)

un+1 − u∗

�t
= −∇pn+1. (5)

Here, �t denotes the time step and the superscript n the time t = n�t . From the first equation,
we determine u∗, subject to periodic boundary conditions. Taking the divergence of the second
equation and using the incompressibility condition ∇ · un = 0, we find a Poisson equation for
the pressure which we solve by means of a multigrid method1 . Finally, we employ Equation
(5) to find the updated velocity field un. More details of the solution procedure are described
in [23]. Due to the simple and static data structures, the solver requires only little storage and
is straightforward to parallelize. The multigrid algorithm ensures that the computational effort
is proportional to the number of grid points when we increase the system size, while keeping
the grid spacing constant.

The challenge is to incorporate the suspended ellipsoids into the fluid description so as to
(i) satisfy the no-slip boundary condition on the particle surface without compromising the
efficiency of the fluid solver, and (ii) calculate the forces F

f

i and torques τ
f

i exerted by the
fluid on particle i. Ideally, smooth particles should never touch due to the divergent lubrication
forces on approach. However, on a finite grid, we cannot resolve this divergence and we must
introduce additional forces F

p

i and torques τ
p

i , as will be described in detail later.
Newton’s equation of motion for the center of mass of particle i reads

v̇i = F
f

i

Mi

+ F
p

i

Mi

− 9

2

ρ

ρp

1

Re
ez, (6)

where vi is the velocity of the center of mass and Mi is the mass of particle i. The equation
has been nondimensionalized as described for the fluid equation (1), leading to a mass scale
of ρa3 and a force scale of ρV 2

Sta
2. Prolate spheroids have a twofold degenerate minor axis a

and a major axis b which leads to the dimensionless mass Mi = (4/3)π(ρp/ρ)(b/a). Since
we have removed the hydrostatic pressure from the fluid equations, we need to introduce a
buoyancy term into the particle equations. Together with the weight of the particles, it forms
the third term on the right-hand side of (6).

For the angular velocity ωi of the rigid particles, we obtain

I iω̇i = τ
f

i + τ
p

i , (7)

where the torques and angular velocity are computed with respect to the center of mass, and
I i is the inertia tensor of particle i.

Both the objectives (i) and (ii) mentioned above can be addressed at the same time. The
general idea is to represent the rigid particles via a manipulation of the body force term f

1We note that pn in the numerical formulation presented above has some properties which are not shared with
the physical pressure. For example, in the presence of a rigid boundary the numerical solution of the system (4–
5) does not depend on the value of u∗ on the boundary and we can thus choose any convenient value for the
normal pressure derivative, typically 0 (cf. [27, pp. 143–207] ). This freedom does not exist for periodic systems.
Furthermore, p is not evaluated at the same ‘time’ as the diffusive and convective terms and thus it does not strictly
correspond to the physical pressure field [28, pp. 623–627].
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in (3). To this end, we consider f to be a spatially distributed (fictitious) constraint volume
force which causes the fluid to move as a rigid body ‘inside’ the particles. Observed from
the outside, the rigid body region imposes the same constraints as a true rigid particle at the
same location, thus giving rise to the same stresses at the ‘interface’. The no-slip condition
is satisfied to the same degree as the equation of motion for the fluid and its discretization
guarantees continuity. The forces and torques on the particles are equal to specific moments
of the constraint force distribution, so that we can avoid the explicit integration of the stress
over the particle surface which is otherwise necessary in order to compute F

f

i and τ
f

i .
In order to determine the fictitious body force numerically, we use an explicit penalization

technique which integrates seamlessly with the fluid solver. First, we introduce rigid particle
‘templates’ Ti of the same shape as the physical particle i. For each Ti we define a displace-
ment field εi (x), for all x ∈ Ti . We identify the position of the Ti’s center of mass by xi .
Numerically, we choose a finite number of reference points xr

ij on Ti , j = 1, . . . Ni to which
we ‘attach’ the field εi (x

r
ij ). The reference points associated with any one template i maintain

the same relative positions, following the Ti’s rigid body translation and rotation

xr
ij = xi + O i(t) · r ij . (8)

The constant vectors r ij denote the initial position of the reference points with respect to the
center of mass of Ti . The rotation matrix O i(t) describes the instantaneous orientation of Ti .
In order to define the displacement field εi , we associate with each reference point ij a fluid
tracer at xm

ij , initially xm
ij (0) = xi +r ij , whose motion is determined by the local fluid velocity,

i.e.,

ẋm
ij = u(xm

ij ), (9)

and define εi(x
r
ij ) = xm

ij − xr
ij for all reference points ij .

We now choose the force density f c arising due to the displacements εi to be

f c
i (x + εi(x)) = −k′εi (x), (10)

which can be interpreted as a spring connecting the tracer and the reference point. The force
density f c

i is zero in the exterior of the region �i = {x + εi (x), x ∈ Ti} associated with
template Ti . We impose the force density f c

i onto the fluid by interpolation to the six nearest
grid points. Its sign ensures that the effect on the fluid will tend to be a reduction of the
modulus of εi . If the external stresses are bounded, then εi remains bounded and approaches
zero as the spring constant k′ increases. If k′ is sufficiently large then the internal time scale
associated with building up the reaction force is short compared to the physical time scale
a/VSt which determines how fast the fluid velocity can change. On time scales longer than
a/VSt we can thus consider the no-slip boundary condition as being satisfied.

The templates Ti also serve to include the inertial contributions of the physical particles
which arise when particle and fluid densities differ. We define M

f

i as the fluid mass ‘inside’
the particle and the ‘missing’ mass Mt

i = Mi − M
f

i . The templates then execute rigid body
motion according to the equation of motion,

M t
i v̇i = F

f

i + F
p

i − 9

2
M t

i

ρ

ρp

1

Re
ez + F c

i . (11)

The forces F
f

i and F
p

i as well as the buoyancy and weight term are the same as those intro-
duced in Equation (6). The force F c

i is the ‘reaction’ to the fictitious body force and is defined
as the negative integral of f c

i over �i .
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We note that, by itself, due to the different mass and additional force term F c
i , Equation (11)

is not equivalent to the particle equation of motion (6). Also, for neutrally buoyant particles
the inertial term in (11) vanishes and we must instead compute the template position (which
appears implicitly in F c

i ) directly from a force and torque equilibrium.

We find the total rate of change of momentum Ṗ
f

i of the fluid ‘inside’ the particle by
integration of (3) over �i , letting f = f c

i ,

Ṗ
f

i =
∮
∂�i

T · dA − F c
i , (12)

where we have made use of the definition of F c
i and Gauß’s theorem to convert the volume

integral over the divergence of the stress into a surface integral. For incompressible fluids,
Ṗ

f

i is proportional to the rate of change of the center of mass velocity of the fluid in �i ,
i.e., Ṗ = M

f

i v̇CM
i , The value 1/k′ sets the degree of accuracy up to which �i resembles the

template Ti and thus the shape of the physical particle.
Adding the equation of motion of the template (11) and of �i [Equation (12)], we see that

the internal constraint forces F c
i cancel, leaving only external forces

(Mt
i + M

f

i )v̇i = Mi v̇i =
∮
∂Ti

T · dA + F
p

i − 9

2
(Mt

i + M
f

i )
ρ

ρp

1

Re
ez. (13)

To the degree that the penalization guarantees that �i has the shape of the modeled particle,
the surface integral occurring in Equation (12) is equal to the hydrodynamic force F

f

i of
Equation (6) for the physical fluid-particle interaction. Dividing by Mi we thus recover the
equation of motion (6) for a rigid particle suspended in the fluid.

The arguments above can be repeated for the angular motion. Considering the ith template
to have a moment of inertia I t

i = Ii − I
f

i , we demand

I t
i ω̇i = τ

f

i + τ
p

i + τc
i , (14)

where the torques τα
i refer to the fluid (α = f ), the particle contact (α = p), and for α = c

to the integral of r i × f c
i . In analogy to (12) we obtain the total hydrodynamic torque on the

‘inside’ fluid if we operate with r i× on the momentum equation (12) and then integrate over
�i . Adding the resulting equation to (14), the torques due to the constraints cancel in the limit
of large k′ and we recover the relation for the angular motion of the particle (7).

We must still specify the force F
p

i due to particle-particle contacts. At sufficiently low
Reynolds numbers, we know from lubrication theory that the presence of the fluid prevents
smooth particle surfaces from touching. At very small distances, when particles approach one
another on a path perpendicular to their surface at a fixed velocity, the stresses necessary to
displace the fluid are inversely proportional to the distance of the surfaces. These forces are
captured correctly only on scales larger than the grid resolution. Since we will here work with
dilute systems in terms of particle-volume fraction, we consider close particle encounters to
be rare. We thus do not attempt to model lubrication forces, but introduce an elastic restoring
force which prevents significant particle overlaps. From our experience with suspensions of
spheres [23], we think that lubrication effects are not important for the collective settling
behavior up to particle-volume fractions of ≈ 0·15

The force between two colliding particles is taken to be proportional to the amount of their
mutual virtual overlap. For non-overlapping particles this force is set to zero. As a further



Speed and orientation distribution in suspensions of prolate spheroids 227

justification for using the elastic particle-particle interaction, we can assume that the short-
range diverging lubrication forces deliver the elastic behavior of the particles even if they are
not in true contact. We have employed the method described by Perram et al.[29, 30], who
define a contact function

Cij = max
{
4λ(1 − λ)XT

ijG
−1
ij (λ)Xij |λ ∈ [0, 1]}. (15)

for two ellipsoidal bodies i and j . Here, Xij = xi − xj is the distance between the centers of
mass of the ellipsoids, and the matrix Gij (λ) is defined as

Gij (λ) = (1 − λ)(OT
i R2

i Oi )
−1 + λ(OT

j R2
jOj )

−1. (16)

The diagonal matrix Ri contains half the axes of the respective ellipsoid i. At contact the
function Cij is unity and lower values indicate overlap. The chosen contact function is not
isotropic for large particle separations, but this causes no problem, since we set the force to
zero for non-overlapping particles.

Finally, we note that for all methods that use fixed structured grids the accessible maximum
system size is limited by the available computational resources. Since the grid spacing must
be smaller than the particle size, there is also a practical lower limit for the particle-volume
fraction, typically in the range of fractions of one percent. Adapted grids will be appropriate
for strongly inhomogeneous suspensions or complex geometries, but there are no conceptual
difficulties applying the ideas presented above to those cases.

3. Results

We now use the described algorithm to study a sedimenting periodic lattice of spheroids and
compare the results to the analytical solution for one isolated sedimenting spheroid corrected
approximately for the effects of the periodicity (Section 3.1). We will then discuss statistical
properties of a periodical system of a set of spheroids, in particular the mean settling velocity
and its relation to the orientation distribution as functions of the volume fraction (Section 3.2).

3.1. A SINGLE ELLIPSOID

We test our algorithm for the case of one spheroid with aspect ratio b/a = 5 and minor
half axis a sedimenting in a periodically repeated cubic unit cell with edge L = 20. In the
computation, the grid spacing is h = 0·625. We model the shape of the spheroid using 133
tracer and reference points. Unless otherwise stated, the particle Reynolds number is 0·3.

The spheroid is initially at rest and positioned at an angle β subtended by the major axis
and the vertical, varying between 0 and π/2. At vanishing Reynolds numbers, due to the time
reversibility of Stokes flow, the particle will maintain its orientation. At finite Re, the flow
field exerts a torque that tends to turn the particle to the horizontal direction. The angular
speed increases with Re. This observation is in accordance with results of the simulation
of elliptical cylinders at sufficiently wide channel geometries and low, but non-zero Reynolds
numbers [22, 25, 31]. For very narrow channels and sufficiently slow settling, however, Huang
et al. [31] report that an ellipse will turn its major axis into the vertical direction.

In order to facilitate a comparison with analytical results [32, pp. 219–232] for the sedi-
mentation velocity and the horizontal drift, we prevent angular motion of the particle, i.e., we
keep β equal to its initial value and repeat the simulation for several values of β. The resulting
sedimentation velocity components are plotted in Figure 1.
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The analytical results for spheroids in infinitely extended systems at Re = 0 show a
sinusoidal variation of the horizontal velocity,

vx = 3

16

A

(A2 − 1)3/2

(
3A

√
A2 − 1 + (2A2 − 3) log(A +

√
A2 − 1)

+ (1 − 2A2) log
A + √

A2 − 1

A − √
A2 − 1

)
sin 2β, (17)

where A = b/a and log is the natural logarithm. The vertical velocity

vz = 3

16

A

(A2 − 1)3/2

[(
A

√
A2 − 1 + (3 − 2A2) log(A +

√
A2 − 1)

+ (1 − 2A2) log
A + √

A2 − 1

A − √
A2 − 1

)

+
(

3A
√

A2 − 1 + (2A2 − 3) log(A +
√

A2 − 1)

+ (1 − 2A2) log
A + √

A2 − 1

A − √
A2 − 1

)
cos 2β

]
(18)

shows a variation proportional to cos 2β around an orientation-independent value. Despite the
non-zero Reynolds number, in our simulation in periodic cells, the dependence on angle and
the amplitude of the variations are almost the same as the theoretical predictions for Stokes
flow. The measured vertical average sedimentation velocity, however, shows a pronounced
offset from the infinite system, Re = 0 result which we now address.

In order to obtain an estimate of the necessary corrections to account for the periodicity of
the system, we resort to the approach of [33] who computed the drag in a periodic lattice of
spheres. Hasimoto replaces the exact flow field by the appropriate fundamental solution of the
Stokes equation in periodic lattices expressing a point force with volumetric flow rate vz. To
obtain an expression for the source strength, and thus the negative drag on one of the spheres,
he employs an approximation attributed to Burgers. The source strength is calculated from the
condition that the integral of the velocity of the fundamental solution over the surface of any
one of the spheres in the array shall vanish [Equation (4.5) in his paper], a condition which
also holds true for the exact solution obeying the no-slip condition. Since the fundamental
solution captures the flow properties far from extended bodies, Hasimoto’s approach recovers
the drag for large values of L/a or for small volume fractions of spheres.

If we equate the negative drag to the weight of a sphere in the stationary case, then vz can be
interpreted as the sedimentation velocity of a lattice of spheres. We now employ Hasimoto’s
approach as described above to estimate the sedimentation velocity of a periodic array of
sedimenting spheroids. We determine the source strength for the fundamental solution such
that the surface integral of the velocity field over the surface of a spheroid, with given value
of A and β, vanishes. This strength will in general be directed neither along the major axis nor
in z direction; it is, however, linearly dependent on vz. Setting the strength to the weight of
the spheroids (A = 5), we obtain, for example, vz = −3·01 + 14·19(a/L) if the main axis is
aligned with gravity (β = 0) and vz = −2·37+14·19(a/L)] for β = π/2. A Maple worksheet
to compute vz for other values of A and β is available on request from the authors. We stress
that, even in the limit of small volume fractions, for A �= 1, these solutions cannot be expected
to become exact, because we make a systematic error arising from the use of the approximate
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Figure 1. Sedimentation velocity of a single sedimenting particle (b/a = 5, Re = 0·3) in a periodically repeated
simulation cell of size 20 × 20 × 20 shown as a function of the angle β between major axis and direction of
gravity. The angle is held fixed during the sedimentation process. Single points correspond to the simulation
results, whereas solid lines are the Stokes-regime predictions for particles in unbounded fluids. There is almost
no difference in the horizontal drift velocity vx (upper part), but a significant offset for the velocity component
in the vertical direction vz. Plotted for comparison, the dotted line shows the results for the expected vertical
sedimentation velocity for a periodic array of particles following from an extension of Hasimoto’s [33] arguments
to spheroids. We do not expect the simulation results to match this line exactly, because the underlying assumptions
are valid only in the limits b/a → 1, Re → 0 and to order a/L, but the difference demonstrates clearly the
importance of finite-size effects.

fundamental instead of the full solution of the Stokes equation. The error increases with the
aspect ratio A. The dotted line in Figure 1 shows the expected sedimentation velocity for
periodic dilute suspensions from our use of Hasimoto’s arguments for a/L = 20 and A = 5.

As compared to the analytical single-particle result, significant finite-size corrections are
visible. We think that most of the remaining deviation is due to our approximation of the flow
field and the crude treatment of the no-slip boundary conditions. Further contributions of un-
known but probably smaller amplitude are due to the finite Reynolds number, which likewise
tends to lower the sedimentation speed, and finally the resolution of the computational grid.
In accordance with the analytical prediction for Stokes flow, the single fiber sediments fastest
when oriented vertically (β = 0) and slowest when oriented horizontally (β = π/2).

3.2. SETTLING SPEED IN SUSPENSIONS OF SPHEROIDS

We now turn to discussing the case of many suspended particles. Due to their ability to trans-
mit stress instantaneously along their long axis b, rigid elongated objects influence regions
of the flow of dimension b3. Thus, in comparison with suspensions of spheres, suspension
of high-aspect-ratio fibers, with minute volume fractions φ, suffice to produce significant
hydrodynamic effects. We thus follow the common practice and multiply the spheroid volume
fraction by b3/ba2 = (b/a)2 to allow for better comparison of our results with other studies
of fiber or ellipsoid suspensions with aspect ratios that differ from the one considered here.
The concentration range with φ(b/a)2 > 1 and φ � 1 is called the semi-dilute regime.
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Figure 2. Negative of the sedimentation velocity −v̄z(t) averaged over particles in 20 different initial configura-
tions as a function of time.

In the same geometry as used above, we now release a few ellipsoids at random positions
and with random orientation. The positions and orientations now vary in accordance with the
stresses induced by the fluid motion.

The approach of the suspension dynamics to a steady state is demonstrated by the time
evolution of the sedimentation velocity of the particles during the initial phase of the simula-
tion (Figure 2). The velocities have been averaged over 20 simulations and the used volume
fraction is φ(b/a)2 = 1. The average particle velocity continues to increase during a long
transient period, and after 100–150 Stokes times it becomes stationary. In the steady state,
we still observe fluctuations of the temporary average velocity, but no long-term drift. Here-
after, we concentrate on the steady-state behavior. All averages are taken as time, particle and
ensemble averages starting after the initial transient behavior has ended.

Next, we study the average particle velocity. The horizontal components of the average
velocity approach zero. The resulting average velocity component in the vertical direction is
displayed in Figure 3. Entering the semi-dilute from the dilute regime φ(b/a)2 � 1, we first
pass through a maximum of the sedimentation velocity at φ(b/a)2 ≈ 0·4 before we observe a
monotonic decrease. The existence of this maximum is quite remarkable, since it is not present
in suspensions of spherical particles. The experiments of Herzhaft and Guazzelli [13] suggest
a maximum in the sedimentation velocity for cylindrical fibers with A = 5, 11 and 32 at a
value of φ ≈ 5 × 10−3 independent of A within the experimental error bars. This value is
lower than that observed in the spheroid simulations (0·016).

The experimentally observed maximum settling velocity for A = 5 and A = 11 is larger
than that for a single, vertically oriented fiber and thus cannot be explained by a concentration
dependence of fiber orientation alone. Koch and Shaqfeh [34] described an instability mech-
anism that leads to cluster formation in dilute fiber suspensions at low Reynolds numbers. A
‘test’ fiber in the velocity field far from a sedimenting single fiber tends to orient its main axis
such that the relative velocity of the two particles becomes negative. Thus, the fibers will tend
to form clusters until near-field effects or contact forces intervene. In simulations at Re = 0
that use a point-particle approximation and neglect lubrication effects, at much lower effective
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Figure 3. Negative of the average sedimentation velocity −v̄z of a suspension of spheroids as a function of the
effective volume fraction φ(b/a)2. The dotted curve shows the Richardson–Zaki law (1 − φ)5·5 multiplied by the
velocity expected for a dilute suspension with the same orientation distribution for the particles than measured in
our case for large effective volume fractions. Corresponding true volume fractions φ are marked on the top axis.
Error bars denote statistical errors of the mean from averaging over initial conditions and time.

volume fraction 0·1 and higher aspect ratio (A = 100), Mackaplow and Shaqfeh [14] have
observed fiber clustering to the extent of streamer formation in the simulation cell. In these
simulations, no stationary sedimentation velocity was observed by the end of the simulations
after 100–200 Stokes times. The strong increase in sedimentation velocity could only be
attributed to cluster formation.

Visual inspection of the simulated particle arrangement reveals a non-uniform distribution
of fibers after the transient, but the simulated suspension sedimentation velocity never exceeds
possible single fiber values. We know that, unlike in Stokes flow, single, unconstrained fibers
turn horizontal and sediment slowly compared to fibers in vertical orientation. As the concen-
tration increases, we expect hydrodynamic interactions with other particles to destabilize the
horizontal state. Thus, for low volume fractions the dimensionless sedimentation speed should
be smaller than in inertia-free flows.

In order to assess the importance of the orientation distribution, we next focus on the
distribution n(cos β) of the cosine of the ‘polar’ angle of the major axis with the vertical, where
n(cos β) sin βdβ is the fraction of particles with polar angles in the range β . . . β+dβ; n(cos β)

equals 1 for particle orientations distributed uniformly over the unit sphere. Our numerical
findings, averaged over several initial configurations and simulation time, are displayed in
Figure 4.

Herzhaft et al. [12, 13] find that the orientation distribution is almost independent of aspect
ratio. They measure the angles from the projected images in the xy-plane. These cannot be
directly compared to the vertical angles β, but their results imply that a fraction of more
than half of the fibers have cos β > 0·9 [13]. Since inertia in otherwise undisturbed flows
tends to align fibers horizontally, in our simulations the orientation distribution at low φ(b/a)2

shows a significant fraction of horizontally oriented spheroids. For φ(b/a)2 = 0·263, even the
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maximum is located at cos β = 0. Only for φ(b/a)2 > 0·4 the maximum appears at cos β = 1,
corresponding to vertical alignment. Increasing the concentration further does not alter the
distribution significantly, although the maximum of the distribution at cos β = 1 continues to
increase slightly.

Clusters of sedimenting fibers experience shear forces where particles are exposed to the
back-flow in their environment. Thus, we expect these particles to follow trajectories (flips)
reminiscent of Jeffery orbits, i.e., the particle rotates as dictated by the vorticity of the flow, but
for long times remains oriented with its major axis in the shear plane, in our case parallel to
gravity, and then rapidly flips by an angle of π into the opposite direction. Such flips have been
observed in fiber suspensions [12, 13] and in the simulations by Mackaplow and Shaqfeh [14].

It is instructive to examine what the orientation distribution would be if all fibers followed
Jeffery orbits. Let us assume that the flow vorticity points in the positive y direction. The
Jeffery orbit of the particle is then governed by

β̇ = κ
A2 cos(β)2 + sin(β)2

A2 + 1
, (19)

where κ denotes the shear rate. The inverse of the angular velocity is proportional to the
probability of finding the particle at a random instant with orientation β. That is to say, for
an ensemble of independent particles following Jeffery orbits, we find nJ (β) ∝ 1/β̇ as the
probability density for any one of them to have orientation β. It is, however, more conve-
nient to work with the probability nJ (cosβ) of finding a specific value of cos β, because a
geometrically random distribution of orientations β corresponds to n(cos β) = 1. We use
nJ (β)dβ = nJ (cos β)d cos β and take the normalization into account. Then we find,

nJ (cos β) =
(∫ π/2

0

dβ

A2 cos(β)2 + sin(β)2

)−1
1

sin(β)

1

A2 cos(β)2 + sin(β)2
. (20)

The distribution is independent of the shear rate κ of the flow. The normalization integral in
this expression can be computed analytically, and for A = 5 is found to be (13/5)π.

Like the measured orientation distribution, the distribution nJ increases with β. The inverse
sine factor causes an inverse square root singularity in 1−cos β as cos β → 1, i.e. for the major
axis lying in the shear plane.

In a three-dimensional suspension, the situation is more complex. The flow in general
displays an elongational component in addition to non-planar shear profiles and local vari-
ations in shear rate. Even in plane shear, the major axis of the fibers precesses on a cone
with axis in the direction of vorticity and if we assume that shear mostly appears in the
vertical velocity components, β will then not assume its extreme values 0 or π/2. However,
the simulated stationary orientation distributions show a maximum at cos β = 1, reminiscent
of the inverse-square-root singularity expected in the ideal case.

The behavior of the sedimentation speed at large concentrations is monotonically decreas-
ing, analogous to the behavior of sphere suspensions at low Reynolds numbers which are well
described by the phenomenological Richardson–Zaki law v̄z = (1 − φ)n, where n ≈ 5 . . . 6
for Re → 0. To see whether this law describes the behavior in the semi-dilute regime, we
first estimate a value for the sedimentation speed from the assumption that fibers sediment
independently, v̄(0)

z = ∫
vz(cos β)n(cos β)d cos β ≈ −1·71. Here, we have used the measured

single particle sedimentation velocities vz from Figure 1 and the orientation distribution for
φ(b/a)2 = 3·8. We then plot the expression v̄(0)

z (1 − φ)5·5 in Figure 3; φ is indicated by
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Figure 4. Distribution of cos(β) of particles sedimenting at effective volume fractions
φ(b/a)2 = 0·263(+), 0·393(×), 0·625(∗), 0·75(�) in part (a) and at φ = 1·5(+), 2·3(×), 3·0(∗), 3·8(�) in
part (b) of the figure. Note that an entirely random orientation distribution of fibers corresponds to a constant of 1.
Part (a) demonstrates that the distribution changes from one in which the particles prefer the horizontal direction
that is typical for the single spheroid behavior to one in which the vertical direction is favored. The maximum
of the sedimentation velocity is associated with the distribution (×) where the particles do not experience strong
back-flow, but start to interact in such a fashion that a substantial fraction turns away from the horizontal to
assume other orientations.

the labels on the upper axis. We see that the functional form of the settling velocity for
effective volume fractions larger than for the maximum is reproduced quite well, and the
hindrance effects seem to be captured well by the Richardson–Zaki correlation. However, the
sedimentation speed is substantially larger than expected from the single-particle behavior
which can be accounted for by clustering effects. To see whether this agreement is not purely
coincidental, we must repeat the simulations with a different aspect ratio of the spheroids:
it must then become clear, whether the large-φ behavior of the settling velocity scales with
φ or rather with the effective volume fraction φ(b/a)2. A scaling with φ indicates that the
reduction of the settling velocity is controlled by the average back-flow velocity, because its
value −vzφ/(1 − φ) is set by the real volume fraction and not by the effective one. We hope
to address this interesting issue in the future.

4. Summary and conclusion

We have presented three-dimensional dynamical simulations of suspensions of sedimenting
prolate spheroids at small, but nonzero Reynolds numbers. We observe a maximum of the
sedimentation velocity as a function of the volume fraction of fibers at the volume fraction
φ(b/a)2 ≈ 0·4· We also presented simulation data for the distribution of the orientation of the
spheroids and linked their properties to the form of the sedimentation velocity curve. In the
semi-dilute regime, the distribution of orientations does not change significantly, and the sed-
imentation velocity decreases monotonically due to the increasing back-flow. At low volume
fractions, inertial effects tend to align particles horizontally and thus lead to a reduction in the
sedimentation speed as compared to Stokes flow.
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